# Nematic boson in an iron-based superconductor

Ukratop Workshop December 4-5, 2018

## **Christian Hess** Institute for Solid State Research IFW Dresden



Leibniz Institute for Solid State and Materials Research Dresden



# Acknowledgement



#### SPP1458

Deutsche Forschungsgemeinschaft



European Research Council Established by the European Commission

STM experiments

Pranab K. Nag Jose Guevara Zhixiang Sun Sven Hoffmann **Theory** Steffen Sykora **Crystals** R. Kappenberger, S. Wurmehl

# Acknowledgement





# Acknowledgement



#### SPP1458

Deutsche Forschungsgemeinschaft



European Research Council Established by the European Commission

STM experiments

Pranab K. Nag Jose Guevara Zhixiang Sun Sven Hoffmann **Theory** Steffen Sykora **Crystals** R. Kappenberger, S. Wurmehl

# Outline

#### Warm-up

Scanning tunneling microscopy and spectroscopy Superconductivity

## **Probing electron-boson coupling in LiFeAs**

## Local spectroscopy Friedel oscillations



## Scanning Tunneling Microscopy (STM)





#### ➡ Topographic surface data



Christian Hess – IFW Dresden

Scanning tunneling microscopy and spectroscopy

## Scanning Tunneling Spectroscopy (STS)







Scanning tunneling microscopy and spectroscopy

## Superconductivity: short introduction

#### Macroscopic quantum state

- Zero resistivity<sup>1</sup>
- Meißner effect<sup>2</sup>

#### **Microscopic BCS-theory<sup>3</sup>**





<sup>1</sup>Kamerlingh-Onnes, Comm. Leiden **120b** (1911)

<sup>2</sup>Meißner & Ochsenfeld, Naturwissenschaften **21**, 787 (1933) <sup>3</sup>Ba

<sup>3</sup>Bardeen, Cooper, Schrieffer, Phys. Rev. **108**, 1175 (1957)

## **Conventional: electron-phonon interaction**



Christian Hess - IFW Dresden

Superconductivity in a nutshell

## **Unconventional: electron-electron interaction**

#### e.g. in iron-based superconductors

#### Spin fluctuations...

#### **Orbital fluctuations...**



A. Chubukov, 2012

# Idea: Fermi surface nesting and spin fluctuations drive superconductivity

I. Mazin, Phys. Rev. Lett. 101, 057003 (2008)

#### Idea: Orbital (nematic fluctuations) drive superconductivity

Kontani & Onari, Phys. Rev. Lett. 104, 1547001 (2010)

# Outline

#### Warm-up

Scanning tunneling microscopy and spectroscopy Superconductivity

#### **Probing electron-boson coupling in LiFeAs**

## Local spectroscopy Friedel oscillations



## **Explore possible pairing bosons by STM/STS**

#### LiFeAs

- Iron-pnictide superconductor
  unconventional
- T<sub>c</sub> ~ 17 K
- Stoichiometric superconductor
- "perfect" surfaces
- No magnetic order
- No nematic order





#### **Temperature dependent STS on LiFeAs**

#### Topography @ 5 K



#### Spectroscopy









#### **Friedel oscillations**

#### Quasiparticle scattering off defects $\rightarrow$ Friedel oscillations





#### Hänke, Hess et al., PRL 2012; Hess et al., PRL 2013



*U<sub>t</sub>*=-50mV; *I<sub>t</sub>*=600pA

"Quasiparticle Interference (QPI)"

Hänke, Hess et al., PRL 2012; Hess et al., PRL 2013



Scattering vector map!

"Quasiparticle Interference (QPI)"

Hänke, Hess et al., PRL 2012; Hess et al., PRL 2013

**q**-space image



Hänke, Hess et al., PRL 2012; Hess et al., PRL 2013

**q**-space image



Hänke, Hess et al., PRL 2012; Hess et al., PRL 2013

ARPES-Data: S. Borisenko et al., PRL 105, 067002 (2010)

Christian Hess – IFW Dresden

Friedel oscillation spectroscopy



See also: Allan et al., Science **336**, 563 (2012) Chi et al., PRB **89**, 104522 (2014)

Hänke, Hess et al., PRL 2012; Hess et al., PRL 2013

**ARPES-Data:** S. Borisenko et al., PRL **105**, 067002 (2010)



Local spectroscopy of LiFeAs



Hänke, Hess et al., PRL 2012; Hess et al., PRL 2013

Friedel oscillation spectroscopy

#### Friedel oscillations with high q resolution

Topography @ 6.7 K



Iron defects Schlegel, Hess et al., PSSB 2017; Grothe et al., PRB 2012

#### **Energy dependence**



#### **Energy-momentum dependence**

T = 6.7 K



#### **Energy-momentum dependence**

T = 6.7 K



<sup>1</sup>Schlegel, Hess et al., Phys. Stat. Sol. B 2017

#### **Boson-assisted scattering?**

T = 6.7 K





**1** Impurity bound states<sup>1</sup>

<sup>1</sup>Schlegel, Hess et al., Phys. Stat. Sol. B 2017

Friedel oscillations and electron-boson coupling

#### **Boson-assisted scattering**

**Electron-boson coupling** 



Well established: Band energy renormalization  $\mathcal{E} \implies \widetilde{\mathcal{E}}$ 

#### **Boson-assisted scattering**

**Electron-boson coupling** 



Friedel oscillations and electron-boson coupling

#### **Resonantly enhanced Friedel oscillations**

Superconducting State – 6.7 K



#### **Check: signature at negative energies?**

#### Superconducting State – 6.7 K



#### **Check: signature at negative energies?**

#### Superconducting State – 6.7 K



#### **Superconducting vs. Normal State**



Resonance at ~14 meV persists!

\* Spin orbit split bands ( $\lambda$ ~10meV) yield similar shift in normal state as  $\Delta$  in SC state

\*

#### Friedel oscillations vs. dl/dU

Integration for q<0.1 $\pi$ /a



Check tunneling spectra...

## Friedel oscillations vs. dl/dU



Friedel oscillations and electron-boson coupling

Electron-boson coupling  $\implies$  Enhanced Friedel oscillations

Electron-boson coupling - Enhanced Friedel oscillations



Electron-boson coupling - Enhanced Friedel oscillations



#### **Strained LiFeAs**



- Suppressed leading gap Δ
- Global appearance of resonance peak
- Stripe order

Electron-boson coupling - Enhanced Friedel oscillations

