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Nernst - Ettingshausen effect (1886)

Walther Nernst
1864 - 1941

Nobel Prize in chemistry
(1920) in recognition of his
work in thermochemistry.
Third law of thermodynam-
ics.

Nernst signal
ey(T ) = −σxxβyx−σyxβxx

σ2
xx+σ2

xy

ey(T ) ≈ βxy

σxx

for σxx ≫ |σxy|
βxy is the thermoelectric
coefficient
Sensitive to the details of
the electronic structure

Albert von Ettingshausen
1850 - 1932

ey = − Ey

∇xT

[
µV
K

]

Energy scale:
kB/e ∼ 86µV/K
There are: 1st NE effect:
∇xT → Ey

2nd NE effect: jx → ∇yT

S.G. Sharapov (BITP, Ukraine) Anomalous Hall and Nernst effects UKRATOP, Dresden 3 / 22



Spin Nernst (SN) effect
Spin caloritronics phenomena

SH and SN effects
a) b)

For NE an external magnetic field
B ‖ ẑ 6= 0 is required!
NowB = 0, but there is the internal mag-
netic field or spin-orbit interaction.
SN effect: js = −β̂s∇∇∇T
with the thermo-spin tensor, β̂s

Purpose is to study SN effect in low-
buckled Dirac materials.
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Spin Nernst (SN) effect
Spin caloritronics phenomena

SH and SN effects
a) b)

For NE an external magnetic field
B ‖ ẑ 6= 0 is required!
NowB = 0, but there is the internal mag-
netic field or spin-orbit interaction.
SN effect: js = −β̂s∇∇∇T
with the thermo-spin tensor, β̂s

Purpose is to study SN effect in low-
buckled Dirac materials.

Spin current subtlety
There is no conservation of spin!
∂Sz

∂t
+∇∇∇ ·Js = Tz, where the spin torgue

density Tz(r) = ℜeΨ†(r)τ̂Ψ(r) with

τ̂ ≡ dŜz

dt
= 1

i~
[Ŝz, Ĥ ].

When [Ŝz, Ĥ ] = 0 the spin torque
term is zero and the spin current

Js(r) = ℜeΨ†(r)12

{
v̂, Ŝz

}
Ψ(r) with

the spinor ΨT = (ψ↑, ψ↓).

J. Shi, P. Zhang, Di Xiao, Q. Niu, PRL
96, 076604 (06); P. Zhang, Z. Wang,
J. Shi, Di Xiao, and Q. Niu, PRB 77,
075304 (08).
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Low-buckled Dirac materials

Silicene: vertical distance between
sublattices 2d ≈ 0.46Å.
Lattice constant a = 3.87Å.
So far grown on Ag and ZrB2 sub-
strates which are both conductive –
no transport measurements as yet.
2D sheets of Ge, Sn, P and Pb atoms
(the materials germanene, stanene
and phosphorene).

Strong intrinsic spin-orbit interaction in con-
trast to graphene

HSO = i
∆SO

3
√
3

∑

〈〈i,j〉〉
σσ′

c†iσ(νννij · σσσ)σσ′cjσ′

with ∆SO ∼ 10meV, νzij = ±1.

S.G. Sharapov (BITP, Ukraine) Anomalous Hall and Nernst effects UKRATOP, Dresden 5 / 22



Low-buckled Dirac materials

Silicene: vertical distance between
sublattices 2d ≈ 0.46Å.
Lattice constant a = 3.87Å.
So far grown on Ag and ZrB2 sub-
strates which are both conductive –
no transport measurements as yet.
2D sheets of Ge, Sn, P and Pb atoms
(the materials germanene, stanene
and phosphorene).

Strong intrinsic spin-orbit interaction in con-
trast to graphene

HSO = i
∆SO

3
√
3

∑

〈〈i,j〉〉
σσ′

c†iσ(νννij · σσσ)σσ′cjσ′

with ∆SO ∼ 10meV, νzij = ±1.

Perpendicular to the plane electric field Ez

opens the tunable gap ∆z = Ezd.
Interplay of two gaps: ∆SO and ∆z.
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Low-energy Hamiltonians and main goals

1. Toy model: two-component Dirac fermions model

H = ~vF (kxτ1 + kyτ2) + ∆τ3 − µτ0.

The mass ∆ breaks TR symmetry. To study off-diagonal part of the TE tensor β̂:

j = σ̂E− β̂∇T
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Low-energy Hamiltonians and main goals

1. Toy model: two-component Dirac fermions model

H = ~vF (kxτ1 + kyτ2) + ∆τ3 − µτ0.

The mass ∆ breaks TR symmetry. To study off-diagonal part of the TE tensor β̂:

j = σ̂E− β̂∇T

2. Silicene

Hη = σ0 ⊗ [~vF (ηkxτ1 + kyτ2) + ∆zτ3 − µτ0]− η∆SOσ3 ⊗ τ3,

τττ and σσσ – sublattice and spin; k is measured from the Kη points.
There is a spin σ = ±, and valley η = ± dependent gap ∆ησ = ∆z − ησ∆SO or
mass ∆ησ/v

2
F , where vF is the Fermi velocity.

When ∆ησ = 0 come back to graphene.
TRS is unbroken for any ∆ησ.

To study off-diagonal part of the thermo-spin tensor β̂s:

js = σ̂scE− β̂s∇T
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Anomalous Hall effect in the toy model

For B = 0 equation of motion for η = +

v̇ =
1

i~
[v, H ] = 2v2Fk× τττ − 2∆

~
v × ez, v = vFτττ.

Here the first term corresponds to Zitterbewegung and the second term
corresponds to the Lorentz force due to magnetic field Beff ⊥ plane, where
Beff ∝ ∆. This is related to the Haldane model, Phys. Rev. Lett. 61, 2015
(1988), also T. Ando, J. Phys. Soc. Jpn. 84, 114705 (15).
For T = 0 the intrinsic (not induced by disorder) AHE

ση
xy = −e

2sgn (η∆)

4π~

{
1, |µ| ≤ |∆|,
|∆|/|µ|, |µ| > |∆|.

For |µ| > |∆| the vertex corrections modify the result N.A. Sinitsyn, J.E. Hill,
H. Min, J. Sinova, and A.H. MacDonald, PRL 97 106804 (06). Moreover, the
standard diagrammatic approach fails A. Ado, I.A. Dmitriev, P.M. Ostrovsky, and
M. Titov, Europhys. Lett. 111, 37004 (15).

We will return to the AHE in the second part of my talk.
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SHE scenario for silicene

Silicene for B = 0 TR unbroken σxy =
∑

ξ,σ=± ξσxy(∆ → ∆ξσ) = 0.
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SHE scenario for silicene

Silicene for B = 0 TR unbroken σxy =
∑

ξ,σ=± ξσxy(∆ → ∆ξσ) = 0.
Kane-Mele scenario of SHE. It occurs due to the presence of two subsystems with
σ = ± exhibiting the quantum Hall effect: σSz

xy = − ~

2e

∑
ξ,σ=± ξσσxy(∆ → ∆ξσ).

Proposed for graphene in C.L. Kane and E.J. Mele, PRL 95, 226801 (05). For ∆z = 0

σSz
xy = − e

2π sgn (∆SO)
[
θ(|∆SO| − |µ|) + |∆SO|

|µ| θ(|µ| − |∆SO|)
]
For |µ| < |∆SO| –

quantum spin Hall insulator.
σSz
xy is measured in the units of e/(4π).
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Why an interesting physics can be expected?

Mott relation for thermoelectric coefficient (toy model):

βxy = −π
2k2B
3e

T
∂σxy(µ,∆, T = 0)

∂µ

Then the Nernst signal for σxx ≫ |σxy | and |µ| > |∆|:

ey(T ) ≈
βxy
σxx

= −
(
kB
e

)
πe2

12~σxx

kBT∆sgn (µ)

µ2
.

The order of magnitude is ey(T ) ∼ kB/e ∼ 86µV/K.
Tuning the position of µ by changing the gate voltage one gains from 3 to 4
orders of magnitude in ey as compared to the normal nonmagnetic metals, where
ey ∼ 10nV/K per Tesla.
No AHE in silicene, but it should be SHE and large spin Nernst effect!
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Problem with the Kubo formula: toy model

Consider the usual definition of the thermolectric tensor

β̃xy = − ~

T
lim
ω→0

Q
eq(R)
xy (ω)

ω
,

where Q
eq(R)
xy is the retarded response function of the electric and heat currents.

ΥΥΥ
(e)
α Υ

(q)
β

ΥΥΥ
(e)
α – electric current vertex; Υ

(q)
α – heat current vertex.

In the clean case (bare bubble) and in the limit T → 0

β̃xy = − e

4π~T
[∆sgn (µ)θ(|µ| − |∆|) + µsgn (∆)θ(|∆| − |µ|)]

diverges!
At T = 0 the thermoelectric tensor must become zero: it describes the transport
of entropy, which, in accordance with the third law of thermodynamics, has to
become zero when T → 0.
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Modified Kubo formula
Role of the magnetization currents

It was shown by Yu.N. Obraztsov, Fiz. Tverd. Tela 6, 414 (1964) [see also N. R.
Cooper, B. I. Halperin, and I. M. Ruzin, PRB 55, 2344 (1997); T. Qin, Q. Niu,
and J. Shi, PRL 107, 236601 (11)] that in the presence of an effective magnetic
field, the off-diagonal thermal transport coefficient β̃xy has to be corrected by
including of the magnetization Mz term: so that the correct thermoelectric tensor

βxy = β̃xy +
cMz

T
,

where (V.P. Gusynin, S.G. Sh., and A.A.Varlamov, PRB 90, 155107 (14). )

Mz(B = 0) =
e sgn (η∆)T

4π~c

[
ln cosh

µ+ |∆|
2kBT

− ln cosh
µ− |∆|
2kBT

]
.

In the limit T → 0 it cancels out the diverging part of β̃xy and the third law of
thermodynamics is restored.
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It was shown by Yu.N. Obraztsov, Fiz. Tverd. Tela 6, 414 (1964) [see also N. R.
Cooper, B. I. Halperin, and I. M. Ruzin, PRB 55, 2344 (1997); T. Qin, Q. Niu,
and J. Shi, PRL 107, 236601 (11)] that in the presence of an effective magnetic
field, the off-diagonal thermal transport coefficient β̃xy has to be corrected by
including of the magnetization Mz term: so that the correct thermoelectric tensor

βxy = β̃xy +
cMz

T
,

where (V.P. Gusynin, S.G. Sh., and A.A.Varlamov, PRB 90, 155107 (14). )

Mz(B = 0) =
e sgn (η∆)T

4π~c

[
ln cosh

µ+ |∆|
2kBT

− ln cosh
µ− |∆|
2kBT

]
.

In the limit T → 0 it cancels out the diverging part of β̃xy and the third law of
thermodynamics is restored.
For silicene the divergence is compensated by the “spin magnetization”
MSz

z = − ~

2e

∑
ξ,σ=± ξσMz(∆ → ∆ξσ), which is nonzero even when the TR

symmetry is unbroken. The orbital magnetization
Mz =

∑
ξ,σ=± ξMz(∆ → ∆ξσ) = 0.
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Thermo-electric and -spin coefficients: results

Toy model

HbL

-4 -2 0 2 4
-0.02

-0.01

0.00

0.01

0.02

Μ�D

Β
xy
�Β

0

Thermoelectric coefficient βxy(µ) in units
of β0 = kBe/~.
Red line — bubble approximation
Blue line — dressed vertex

Spin NE silicene

HbL

-4 -2 0 2 4
-0.04

-0.02

0.00

0.02

0.04

Μ�DSO

Β
xys
�Β

0s

Thermospin coefficient βSz
xy (µ) in units of

βs
0 = kB/2.

Crossing βxy(µ 6= 0) = 0 is caused by
nonmonotonic dependence σxy(µ) = 0
related to the vertex. Other diagrams
modify this result.
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Results: electric vertex included

Spin Hall conductivity σSz
xy (µ,∆z) in units

of σs
0 = e/(2π)

Thermo-spin coefficient βSz
xy (µ,∆z) in

units of βs
0 = kB/2

as functions of the chemical potential µ and the sublattice asymmetry gap ∆z in
the units of ∆SO > 0.
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Summary for the Nernst effect part

We illustrated how the standard Kubo formula has to be altered by the mag-
netization term leading to the correct answer off-diagonal thermoelectric co-
efficient. Note that B = 0! The whole story with the corrections of the Kubo
formula is rather counter-intuitive.

The bare bubble case was presented only for illustration. A more formal
generic proof of the cancellation of the diverging terms was also made.

Spin Nernst effect is strong, so potentially may be observable.

A possibility to distinguish different cases with monotonic and nonmonotonic
dependence σxy(µ) and σ

Sz
xy (µ,∆z) due to the vertex and other diagrams.

Now we pass to the anomalous Hall effect and oscillations of the anomalous Hall
conductivity.
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Origin of magnetic oscillations

Density of states (DoS) is D(ǫ) = |eB|
2π~c

∑
n
δ(ǫ − ǫn).

Increasing B
✲

Ε

ΕF

Ε Ε

DoS

Oscillations of the magnetization were predicted in the paper on Landau diamag-
netism, Z. Phys. 64, 629 (1930), although Landau levels were originally discovered
by I. Rabi, Z. Phys. 49, 507 (1928) for the Dirac equation! Only then Schrödinger
equation was considered by M.P. Bronstein and I.A. Frenkel, “Quantizing of free
electorns in magnetic field”, J. Russian Phys. and Chem. Soc. 62, 485 (1930).
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Oscillations of density of states

Assumption: Landau levels have a Lorentzian shape δ(ǫ) → Γ
π(ǫ2+Γ2)

, with

the impurity scattering rate Γ = ~/(2τ) independent of energy or
magnetic field, and τ being a mean free time of quasiparticles.
In perpendicular magnetic field the DoS acquires an oscillatory component
D̃(µ,B),

D̃(µ,B)

D0(µ)
= 2

∞∑

s=0

cos

[
2πs

(
cS(µ)

2πe~B
+

1

2
+ β

)]
RT (sλ)RD(s),

where D0(µ) is DoS in the absence of magnetic field.
Here S(µ) is the electron orbit area in the momentum space, µ is the chemical
potential and β is the topological part of the Berry phase,

RT (sλ) =
sλ

sinh sλ
with λ = 2π2kBT

~ωc
is the temperature amplitude factor,

RD(s) = exp
(
− πs

ωcτ

)
is the Dingle factor.
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Shubnikov–de Haas (SdH) oscillations
Lev Shubnikov

1901− 1937
Worked in the Leiden cryogenic
laboratory of Wander Johannes
de Haas from 1926 – 1930.
He established the first Soviet
cryogenic laboratory in Kharkiv,
Ukraine.

The SdH oscillations are described theoretically by

σxx(B, µ) =
σ0

1 + ω2
cτ

2

[
1 + γf(ωcτ)

D̃(µ,B)

D0(µ)

]
,

where σ0 = e2|n∗|τ/m∗ is the conductivity for
B = 0.
For the Dirac case the carrier imbalance is |n∗| =
(µ2 − ∆2)/(4π~2v2F ). Here f(ωcτ) is a smooth
function of ωcτ .
Under the assumption of constant Γ in the bare
bubble approximation, the function f(ωcτ) = 1.
γ = 2 for 2D electron gas and γ = 1 for the Dirac
fermions.
T. Ando, J. Phys. Soc. Jpn. 37, 1233
(1974); A. Isihara and L. Smrčka, J. Phys. C
19, 6777 (1986); V.P. Gusynin and S.G.Sh, PRB
71, 125124 (05) for DF.
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SdH oscillations of the Hall conductivity
The Hall conductivity is not just a monotonic or steplike function of µ and/or B,
towards the quantum Hall regime, but also contains the oscillatory part:

σxy(B, µ) =− σ0ωcτ sgn (eB) sgnµ

1 + ω2
cτ

2

[
1− g(ωcτ)

ω2
cτ

2

D̃(µ,B)

D0(µ)

]
,

where g(ωcτ) is a smooth function of ωcτ .
A. Isihara and L. Smrčka, J. Phys. C 19, 6777 (1986). Self-consistent

consideration of impurities brings g(ωcτ) =
3ω2

cτ
2

1+ω2
cτ

2 .

We obtained that in the bubble approximation for the DF for ∆ = 0 and small Γ,
the weight of the oscillatory part, g(µτ)/(ωcτ)

2 = |µ|/(ω2
cτ~).

pre QHE regime in graphite

Question: What is about quantum magnetic os-
cillations of σxy for AHE?
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Minimal model is the toy model in magnetic field

Two-component Dirac fermions model

Hη = vF

[
ητ1

(
p̂x +

e

c
Ax

)
+ τ2

(
p̂y +

e

c
Ay

)]
+∆τ3 − µτ0,

where the Pauli matrices τµ act in the pseudospin space, vF is the Fermi velocity.
η = ± corresponds to the two independent K±-points.
The fermion doubling [Nielsen and M Ninomiya] guarantees that the ordinary
solid-state Dirac materials are always described by “pairs” of the Hamiltonians.
Hη on its own breaks the time-reversal symmetry (TRS).
The magnetic field B = ∇×A = Bez ⊥ to the plane. The Landau level energies
are

ǫnη =

{
−η∆sgn(eB), n = 0,

±Mn, n = 1, 2, . . . ,
Mn =

√
∆2 + 2nv2F~|eB|/c.

The n = 0 “zero-mode” level breaks both the particle-hole symmetry and
invariance under B → −B. The TRS remains broken in the B = 0 limit, making
possible the quantum Hall effect in the absence of magnetic field.

S.G. Sharapov (BITP, Ukraine) Anomalous Hall and Nernst effects UKRATOP, Dresden 19 / 22



The oscillatory part of the anomalous Hall conductivity

We find that for |µ| > |∆| the final result is

σAH
xy (B,∆, µ) = − e2

4π~

η∆

|µ|
1

1 + ω2
cτ

2

[
1 + γ

D̃(µ,B)

D(µ)

]
. (1)
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The oscillatory part of the anomalous Hall conductivity

We find that for |µ| > |∆| the final result is

σAH
xy (B,∆, µ) = − e2

4π~

η∆

|µ|
1

1 + ω2
cτ

2

[
1 + γ

D̃(µ,B)

D(µ)

]
. (1)

The structure of Eq. (1) resembles the diagonal conductivity

σxx(B, µ) =
σ0

1 + ω2
cτ

2

[
1 + γf(ωcτ)

D̃(µ,B)

D0(µ)

]
, (2)

rather than the normal Hall term

σH
xy(B, µ) =− σ0ωcτ sgn (eB) sgnµ

1 + ω2
cτ

2

[
1− g(ωcτ)

ω2
cτ

2

D̃(µ,B)

D0(µ)

]
. (3)

The oscillating term in Eq. (1) is not damped by the 1/(ωcτ)
2 factor and has the

same weight as the constant term for all strengths of the magnetic field. The
absence of the ωcτ prefactor makes possible the observation of the oscillations of
the anomalous Hall conductivity even in the low field regime.

A similar to Eq. (1) expression may be expected for any AHE.

S.G. Sharapov (BITP, Ukraine) Anomalous Hall and Nernst effects UKRATOP, Dresden 20 / 22



Conclusions to Part II

SdH oscillations of the anomalous Hall conductivity are predicted.

We [V.Yu.Tsaran, S.G.Sh., PRB 93, 075430 (16)] have also considered real
systems and predicted that SdH oscillations of the anomalous Hall conductivity
can be observed in graphene (nonlocal measurements), low-buckled Dirac
materials (spin Hall conductivity) and magnetic topological insulators.

The specific model was considered, but the results should be valid for a wider
class of AHE systems.

The simultaneous measurements of the SdH oscillations in both ρxx and ρxy
showed the deviations that were attributed to localization. This method,
however, did not become widespread because of the difficulties of measuring
the SdH oscillations of the Hall resistivity.
We hope that the situation will change for AHE.

Thank you very much for listening!
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General results: symmetry properties

The full Hall conductivity is

σxy(B,∆, µ) = σH
xy(B,∆, µ) + σAH

xy (B,∆, µ).

Here σH
xy is the usual normal Hall term which is absent for B = 0

σH
xy(B,∆, µ) = −σH

xy(−B,∆, µ) = σH
xy(B,−∆, µ) = −σH

xy(B,∆,−µ)

and it changes sign under the reversal of carrier type.
σAH
xy is a new anomalous Hall term

σAH
xy (B,∆, µ) = σAH

xy (−B,∆, µ) = −σAH
xy (B,−∆, µ) = σAH

xy (B,∆,−µ).

It does not feel neither the sign of B nor the difference between electrons and
holes.
Onsager relation: σxy(B,∆, µ) = σyx(−B,−∆, µ), that generalizes a usual
relation σH

xy(B) = σH
yx(−B) for the normal Hall conductivity.
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General results: symmetry properties

The full Hall conductivity is

σxy(B,∆, µ) = σH
xy(B,∆, µ) + σAH

xy (B,∆, µ).

Here σH
xy is the usual normal Hall term which is absent for B = 0

σH
xy(B,∆, µ) = −σH

xy(−B,∆, µ) = σH
xy(B,−∆, µ) = −σH

xy(B,∆,−µ)

and it changes sign under the reversal of carrier type.
σAH
xy is a new anomalous Hall term

σAH
xy (B,∆, µ) = σAH

xy (−B,∆, µ) = −σAH
xy (B,−∆, µ) = σAH

xy (B,∆,−µ).

It does not feel neither the sign of B nor the difference between electrons and
holes.
Onsager relation: σxy(B,∆, µ) = σyx(−B,−∆, µ), that generalizes a usual
relation σH

xy(B) = σH
yx(−B) for the normal Hall conductivity.

Normally σAH
xy term cancels out after summation over η = ±.

Problem is how to observe the AHE in the Dirac materials with two valleys?
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