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accidental degeneracy of bands
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basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency. 7 Thus mathematically
the theory of normal modes and their frequencies

~ Cf. E. Wigner, Gott. Nachr. (1930), p. 133.

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G' has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.

It is a pleasure for me to express my thanks to
Professor E. Wigner, who suggested this problem.
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The circumstances are investigated under which two wave functions occurring in the Hartree
or I'ock solution for a crystal can have the same reduced wave vector and the same energy, It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.

"N previous papers, by Bouckaert, Smoluchow-
- - ski, and Wigner, ' and by the author, ' certain
properties of the wave functions and energy
values of an electron moving in the periodic field
of a crystal were derived. These properties were
the properties necessitated by the symmetry of
the crystal and by the reality of the Hamiltonian.
The two questions to be discussed in this paper
are:

(1) In the solution of Hartree's or Fock's
equations for a crystal to what extent may one
expect to encounter accidental coincidences in
energy between two one-electron wave functions
with the same wave vector? By "accidental"
coincidences are to be understood coincidences
not necessitated by the symmetry and reality of
the Hamiltonian.

(2) If the energies of two or more bands
coincide at wave vector k, whether accidentally
or for reasons of symmetry and reality, how may
the energies of these bands be expected to vary
with wave vector in the neighborhood of k?

' Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50,
58 (1936), hereafter referred to as BSW.' Preceding paper, hereafter referred to as I.

The analysis necessary to answer these ques-
tions is rather tedious. Despite this and the fact
that it may not be of practical significance to
bother about too fine details in an approximate
theory, the discussion to be given below may be
of value in forming pictures of the energy band
structures of metals, especially of multivalent
ones. In particular, it is hoped that the complete
determination of energy as a function of wave
vector by interpolation from the results of cal-
culations of the Wigner-Seitz-Slater type will be
facilitated and made more reliable. The results
of this paper also apply, as did those of I, to the
frequency spectrum of the normal modes of
vibration of a crystal; however numerical cal-
culation of these frequencies has not yet ad-
vanced as far as has the calculation of electronic
bands. 3

The notation to be used is the same as in I.
In addition, the symbol LM', 3P] will be intro-
duced to represent the subspace of Hilbert space
spanned together by any two linear manifolds
of wave functions M' and M'.

' Calculations for a simple cubic lattice have been made
by M. Blackman, Proc. Roy. Soc. A159, 416 (1937).

Symmetry inequivalent manifolds (bands) may cross.

For crystals with an inversion center, contacts of equivalent manifolds
M i(k), M j(k) may occur at all points k of an endless curve in k-space

For a crystal without an inversion center, contacts of equivalent manifolds
M i(k), M j(k) may occur for isolated points k, and such contacts cannot be
destroyed by an infinitesimal change in the potential function V

All kinds of contacts of equivalent manifolds except the ones described above
are vanishingly improbable



1 model optical conductivity

2 a quest for Weyl points in the YbMnBi2

3 low energy peaks in optical conductivity of NbP

4 triple points in GdPtBi



optical conductivity of 2D graphene

to be negligible. The function I�xx��+ i0+� is given by

I�xx�� + i0+� =
t2e2a2

8
2 �
k

f���k���nF�− t���k�� − ��

− nF�t���k�� − �������� − 2t���k��/
�

− ���� + 2t���k��/
�� , �11�

where nF�x� is the usual Fermi distribution, � is the chemical
potential, and the function R�xx��+ i0+� is given by

R�xx�� + i0+� = −
t2e2a2

8
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f���k���nF�− t���k�� − ��

− nF�t���k�� − ���
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with

f���k�� = 18 − 4���k��2 + 18
�R��k��2 − �I��k��2

���k��2
,

�13�

and P denotes the principal part of the integral. The
graphene energy bands are given by ��k�= � t���k��, with
��k� defined as

��k� = 1 + ek·��1−�3� + ek·��2−�3�. �14�

B. Real part of the conductivity

The expression for Eq. �11� can almost be written in terms
of the energy dispersion ��k� except for the term

�R��k��2 − �I��k��2

���k��2
. �15�

In order to proceed analytically, and for the time being �see
Sec. III C�, we approximate this term by its value calculated
in the Dirac-cone approximation �see Appendix A�

1

Nc
�

k

�R��k��2 − �I��k��2

���k��2
g����k���  0, �16�

where g����k��� is some given function depending only on
the modulus of ��k�. With this approximation, we have

f���k��  18 − 4���k��2. �17�

Introducing the density of states per spin per unit cell ��E�
defined as

��E� =
1

Nc
�

k
��E − t��k�� , �18�

the expression for the real part of the conductivity reads

R	xx��� = 	0
�t2a2

8Ac
�
��
�/2��18 − �
��2/t2�

��tanh

� + 2�

4kBT
+ tanh


� − 2�

4kBT
� . �19�

Equation �19� is essentially exact in the visible range of the

spectrum; missing is only the contribution coming from Eq.
�16�, whose contribution will later be shown to be negligible.
In the above equation, 	0 is

	0 =
�

2

e2

h
. �20�

The momentum integral in Eq. �18� can be performed lead-
ing to

��E� =
2E

t2�2�
1

�F�E/t�
K� 4E/t

F�E/t�	 , 0 � E � t ,

1
�4E/t

K�F�E/t�
4E/t 	 , t � E � 3t ,�

�21�

where F�x� is given by

F�x� = �1 + x�2 −
�x2 − 1�2

4
, �22�

and K�m� is defined as

K�m� = �
0

1

dx��1 − x2��1 − mx2��−1/2. �23�

In Fig. 2 we give a plot of Eq. �19� over a large energy
range including the visible part of the spectrum
�E� �1.0,3.1� eV�.

It is useful to derive from Eq. �19� an asymptotic expan-
sion for R	xx���. For that, we expand the density of states
around E=0 and obtain

��E� 
2E

�3�t2
+

2E3

3�3�t4
+

10E5

27�3�t6
. �24�

Using Eq. �24� in Eq. �19� we obtain for the optical conduc-
tivity the approximate result
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FIG. 2. �Color online� The optical conductivity as function of
frequency for two values of the chemical potential, �=0 and 0.2 eV,
and two temperatures, T=10 and 300 K. The bottom panels are a
zoom in, close to zero frequency, which allow depicting the fre-
quency region where differences in the chemical potential and in
temperature are most important. We have used t=2.7 eV.
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T. Stauber, et al, PRB 78, 085432 (2008)

T. Ando, et al, jpsj 71, 1318 (2002)

constant σ(ω → 0) = σ0 for µ = 0

step of σ(ω) at ω = 2µ for µ 6= 0

σ0 = π
2
e2

h does not depend on t



3D Weyl semimetal
4×4 Hamiltonian: H = vτxσ · k +mτz + bσz =

(
mI + bσz vσ · k
vσ · k −mI + bσz

)
OPTICAL CONDUCTIVITY OF WEYL SEMIMETALS AND . . . PHYSICAL REVIEW B 93, 085442 (2016)

FIG. 3. (a) Low-energy interband response in the WSM phase
(m/b < 1). Two quasilinear regions are observed before the mas-
sive s ′ = + band contributes. A van Hove singularity occurs at
�/b = 2(1 − m/b). (b) s ′ = − band structure. Characteristic optical
transitions are given by the green arrows for μ = 0. Above �/b =
2(1 − m/b), no transitions occur in the region between the Weyl
nodes. This yields the reduced slope seen in frame (a).

We will restrict our attention to s ′ = − as this is the only
branch which displays WSM behavior, with two Weyl points
on the p̃z axis for p̃x = p̃y = 0. As we are interested in the
low-� dependence, only transitions in the vicinity of the Weyl
nodes are present. Therefore we expand p̃z about the two nodes
located at p̃zc = ±√

b2 − m2. We change variables from p̃z to
p̂z ≡ p̃z − p̃zc and work to lowest order in p̃z. The energy of
the s ′ = − branch becomes

εs− ≈ s

√
p2

x + p2
y + p̃2

z

[
1 −

(m

b

)2
]
. (22)

A change of integration variable from p̃z

√
1 − (m/b)2 to pz

gives an expression for the conductivity which is identical to
the isotropic Dirac case with an extra factor of 1/

√
1 − (m/b)2.

Therefore, the first quasilinear slope of the WSM interband

FIG. 4. Interband optical response of the WSM for finite T and
μ. Finite μ causes a sharp step to occur at � = 2μ, above which the
response is identical to μ = 0. Finite T smears this step and a finite
response is observed below � = 2μ.

conductivity [Fig. 3(a)] is altered from the dotted line (m = 0)
by a factor of 1/

√
1 − (m/b)2. A subtle point is that εs−

has two Weyl nodes and hence, a degeneracy factor of two.
The same result can be obtained from our analytic formula
for the conductivity written in Eq. (17). This is verified in
the numerical results of Fig. 3(a). For m = b �= 0, which
defines the phase boundary between the WSM and GSM,
both Eqs. (16) (for m > b) and (17) (for m < b) involve the
same G−(

√
(b + �/2)2 − b2). For � → 0, the argument of

this function is
√

b� (to leading order) while it is �/2 if
b = 0. Thus, the interband conductivity at the phase boundary
for small � follows a �1/2 law as opposed to the linear-in-�
behavior of b = 0 (DSM). We will return to this discussion in
Sec. IV.

So far, we have restricted our attention to charge neutrality
and zero temperature. In Fig. 4, we show results for the
interband conductivity including finite T and μ for the
WSM (m/b = 0.7). The solid black curve is for reference
and displays the μ = 0, T = 0 result. It can be described
qualitatively as two quasilinear regimes of different slope:
the first (below � = 2(b − m)) going through the origin and
having a slope of approximately 3.5 times greater than the
second region. This second quasilinear line extrapolates to cut
the vertical axis at ∼0.02 in our units. The thermal factor in
Eq. (8) reduces to the Heaviside step function �(� − 2|μ|) at
T = 0. For finite μ, this cuts off the zero-μ curve at � = 2|μ|
below which it is zero and above which it is unchanged from
the charge neutral value. This is clearly seen by the dotted
red and blue curves for μ/b = 0.2 and 1, respectively. The
dashed black curve is for μ = 0 and T/b = 0.1. We note the
depleting of the optical spectral weight at small frequencies
and a decrease in the van Hove kink structure at � = 2(b − m).
Spectral weight at finite T is, of course, transferred to the
low-energy Drude which is not shown in the figure. For
the dash-dotted red curve, the chemical potential is finite
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conductivity [Fig. 3(a)] is altered from the dotted line (m = 0)
by a factor of 1/

√
1 − (m/b)2. A subtle point is that εs−

has two Weyl nodes and hence, a degeneracy factor of two.
The same result can be obtained from our analytic formula
for the conductivity written in Eq. (17). This is verified in
the numerical results of Fig. 3(a). For m = b �= 0, which
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interband conductivity including finite T and μ for the
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linear σ(ω) ∼ ω at low photon energy

a van Hove singularity at
Ω/b = 2|1−m/b|
Weyl semimetal when b > m > 0

a Dirac cone at b = m = 0

C.J. Tabert and J.P. Carbotte, PRB 93, 085442 (2016)



line node semimetal
4×4 Hamiltonian: H = vτxσ · k + bτzσx =

(
bσx vσ · k
vσ · k −bσx

)
J P Carbotte 
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background is perfectly flat in the simplest continuum model 
although the linear dispersion remains [19, 20]. In reality, 
deviations from linear or flat response arise and these carry 
information on correlation effects [19–24] or deviations from 
the simplest possible band structure [25–29]. While screening 
effects have been considered in line node models [30, 31] as 
well as magnetic properties [27], their Landau level structure 
[32] and some aspect of their electromagnetic response [33], 
here we consider the dynamic longitudinal optical conduc-
tivity as a function of photon energy.

In section 2 we specify our model Hamiltonian and provide 
a formula for the dynamic optical conductivity of a line node 
system based on the Kubo formula. The conductivity has two 
contributions: the interband and intraband Drude. The two func-
tions which contain the necessary microscopic information on 
material parameters that determine inter and intra contributions 
are specified. The interband part is evaluated and numerical 
results presented and discussed. In section 3 we provide analo-
gous results for the Drude conductivity and discuss its depend-
ence on temperature and on chemical potential. In section 4 we 
turn to the Lorentz number and Weidemann–Franz law as well 
as the thermopower . A brief conclusion is found in section 4. 
Some of the necessary algebra is given in an appendix.

2. Formalism and interband conductivity

We start from the continuum model Hamiltonian of the form 
[1, 27]

ˆ ˆ ( ˆ ) ˆ ˆτ σ τ σ= ⋅ +H v p b ,x z xF
 

(1)

where b is the magnitude of a spin Zeeman field oriented along 
the x-axis. The τ̂ and σ̂’s are each a set of three ×2 2 Pauli 
matrices, vF is the Fermi velocity and p is the momentum 
equal to �k. In what follows for convenience we will take 
= =� v 1F . Later, the units will be restored. The eigenen-

ergies of the Hamiltonian (equation (1)) can be labelled by 
= ±s  and = ±′s , where s  =  + refers to the conduction band 

and s  =  −, the valence band while ′s  enumerates the two 
branches involved. Specifically, the electron dispersion curves 
( )ε k  versus k take the form

( ) ⎡
⎣⎢

⎤
⎦⎥= + + + ′′ε k s k k k s b .ss x y z

2 2 2
2

 (2)

These eigenenergies are illustrated in figure 1 where the upper 
frame gives ( )′ε kss  as a function of ky and kz for the specific 
case of kx  =  0. By plotting ( )/′ε k bss  versus /k b, we have a 
single universal band structure independent of the value of 
the parameter b. The figure consists of two sets of cones, one 
for positive and the other for negative energies with one set 
displaced upward with respect to the second set. The heavy 
solid black line gives the line of zero energy which consist of 
a circle of radius b which, in our reduced units, equals one. 
In the lower frame, we show a 2D plot of the same dispersion 

curves but now on the momentum axis we have ≡ +⊥k k ky z
2 2 

normalized with b. The vertical arrows indicate the possible 
interband optical transition that will enter our later discussion.

The dynamic longitudinal optical conductivity as a func-
tion of photon energy Ω is given by a Kubo formula [25]

∫

∫

σ
π

ω ω ω

π
ω ω

Ω =
Ω

− +Ω

× +Ω

−∞

∞e
f f

k
v A k v A k

d

d

2
Tr , ,

zz

z z

2

3

3

( ) [ ( ) ( )]

( )    { ˆ ˆ ( ) ˆ ˆ ( )}
 

(3)

where ( )ωf  is the Fermi Dirac distribution function.

( )ω =
+

ω µ−f
1

e 1T
 (4)

with μ the chemical potential and T temperature. The trace 
(Tr) is over the product of four, 4  ×  4 matrices with v̂z the 
velocity matrix for the z-direction and ˆ ( )ωA k,  the matrix 
spectral density which depends on k and energy ω. Details can 
be found in [25] where a ×4 4 matrix model of a Weyl semi-
metal was considered [27]. A straight forward generalization 

Figure 1. Top frame is a schematic of the charge carrier dispersion 
curves in the line node model. The heavy black circle is the nodal 
circle. Bottom frame gives the energy ¯ ( ) ( )/≡ ′ε εk k bss  as a function 
of the normalized component of the momentum in the y-z plane, 
¯ /= +⊥k k k by z

2 2 . The arrows show the possible interband optical 

transitions in the = +′s  (dashed red) and in the = −′s  (solid red) band.

J. Phys.: Condens. Matter 29 (2017) 045301

J P Carbotte 
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quadratic. We refer to this behaviour as 2D-Dirac-like. While 
here we have considered a 3D system, the end result giving ( )ΩI IB

2
 linear in /Ω 2 is characteristic of a 2D-Dirac system like 

graphene.
Our results for ( )σ Ωzz

IB , in units of / π �e v122
F

2, are shown in 
figure 2 (solid black curve) when ≠b 0 and we are dealing with 
a line node. Here we have divided σ by a factor of b and con-
sider its variation with photon energy Ω which has also been nor-
malized to b. This leads to a single universal curve independent 
of b. Also shown for comparison as the dashed red straight line 
of slope one and going through the origin, are the results for a 
3D-Dirac system with a point node. It is clear that above photon 
energy ¯ �Ω 3, line and point node results agree. However, below 
Ω̄ = 2, the line node model deviates strongly from 3D-Dirac and 
shows a constant background absorption of fixed height equal to 

/π3 8 in our units. This constant background is analogous to that 
seen in graphene and is characteristic of 2D-Dirac behaviour. 
There are differences however. In this region

( )σ
π

Ω =
�

e b

v12
.IB

2

F
2 (20)

While constant, it is linearly proportional to b and inversely 
to the Fermi velocity vF. The factor of b is traced to the nodal 
ring while the vF is traced to the 3D integration. In graphene, 
it is a universal number /πe h22 , independent of any material 
parameter.

The interband optical response remains 2D-like up to 
photon energies Ω = b2 . We stress that only interband optical 
transitions between valence and conduction band involving 
the = −′s  branch contribute in this range as can be seen in 
the lower frame of figure  1. These transitions are indicated 
by the solid red vertical arrows. For Ω> b2  the = +′s  branch 
starts to also contribute as shown by the dashed red arrows of 
figure 1(b) and the interband conductivity ceases to be flat. It 
shows a kink followed by a rapid increase before at �Ω b3  it 
has merged with the 3D response (dashed red curve) charac-
teristic of a point node Dirac semimetal. In our units, the slope 

of this linear in Ω response is one and it extrapolates to the 
origin as we see in the dash red curve. Accounting for the units 
3D ( )σ ΩIB  is inversely proportional to vF. In summary, there 
are two distinct regimes to the interband response of a line 
node semimetal. At photon energies Ω< b2 , the behaviour is 
2D-Dirac-like while for Ω> b2  it is 3D-Dirac with a short 
region of photon energy in between these two limits where it 
shows an abrupt increase at Ω = b2  after which it gradually 
evolves to a linear in Ω behaviour with slope / π �e v122

F
2. We 

turn next to the intraband term.

3. Intraband conductivity

The interband conductivity involves ( )ωID  given in equa-
tion (9). Using algebra closely related to that sketched in the 
appendix for ( )ωI IB  we arrive at (see also appendix)

   ω
π

ω= <I
b

b
8

forD (21)

and

( ) ( ) ( )

   

ω
π ω

ω ω

ω
ω

ω

= =
| |

− −

+
−

>−

⎡
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⎢
⎢
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⎜

⎞

⎠
⎟
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⎦
⎥
⎥

g b b

b
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b
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2

1 1
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tan for .

2
2 2 2 2

2 1

2 2

 

(22)

The interband Drude conductivity is

( )( ) ( ) ( )∫σ
π
δ

ω
ωΩ = Ω

ω µ−∞

∞

−�

e

v T
I

d

4 cosh
,zz

T

D
2

2
F 2

2

D
 (23)

where we have restored � and vF factors. The total optical spec-

tral weight under the Drude defined as ( )∫ σ= Ω Ω
∞
+W dzzD 0

D  is 

given by equation (23) with the ( )δ Ω  replaced by 1/2 and the 
DC conductivity ( ( )σ Ω = 0DC ) with ( )δ Ω  replaced by /πΓ1  
where Γ is a transport scattering rate. As ( )ΩID  is even in ω, 
we can write

∫σ
π

π
ω ω

Ω= =
Γ

× +
ω µ ω µ

∞

− +

⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨
⎪
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⎫
⎬
⎪
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�

e

v

I

T
0

1 d

4

1

cosh

1

cosh
T T

DC
2

2
F 0

D

2
2

2
2( ) ( )

( ) ( )

 
(24)

with ( ) /ω ω π=I b 8D  for ω< b and ( )ωg  defined by equa-
tion (22) for w  >  b, thus the integral in equation (24) must be 
broken up into a piece from 0 to b and another from b to ∞. 
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In the limit of zero temperature ( )( ) δ ω µ= −ω
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Figure 2. The interband optical conductivity as a function of 
photon energy Ω̄. Both quantities are scaled by b which makes 
the curve (solid black line) universal. The dashed red line is for 
comparison and applies to the point node 3D-Dirac case. Above 
Ω̄ ≅ 3 , the two line and point node results merge. Below Ω̄ = 2, the 
line node gives a constant response of height /π3 8 in our units.

J. Phys.: Condens. Matter 29 (2017) 045301

σ(Ω) = 3
8πb for Ω < 2b

σ(Ω) ∼ Ω for Ω & 3b

M. Koshino and I. Hizbullah, PRB 93, 045201 (2016), J.P. Carbotte, JPCM 29, 045301 (2017)
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crystal structure of AMnBi2
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YbMnBi2: Dirac bands without SOC and spin polarization
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YbMnBi2: SOC bands at EF
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ARPES Fermi surface maps for YbMnBi2

YbMnBi2: additional 3-rd feature (Fermi arc? Weyl points?) for each lens

EuMnBi2: only 2 features

arXiv:1507.04847



YbMnBi2: experimental optical conductivity

σ recalculated from reflectivity measurements

inter-band part after subtraction of intra-band Drude term

a narrow peak both in the experimental and calculated σ

D. Chaudhuri et al, PRB 96, 075151 (2017)

Where it may come from?



decomposition of σ into inter-band contributions

39-40 → 41-42
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decomposition of σ into inter-band contributions
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decomposition of σ into inter-band contributions

37-38 → 41-42
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contribution from various k-volumes
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the gap at kz = 0
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the gap at kz = 0
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extremely slow k convergence
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TaAs: Weyl points and Fermi arcs

with a single chiral charge of T1 (Fig. 1E). We denote
the 8 Weyl nodes that are located on the brown
plane (kz ¼ 2p

c ) as W1 and the other 16 nodes that
are away from this plane as W2. At the (001)
surface BZ (Fig. 1F), the eight W1 Weyl nodes are
projected in the vicinity of the surface BZ edges,
X and Y . More interestingly, pairs of W2 Weyl
nodes with the same chiral charge are projected
onto the same point on the surface BZ. There-
fore, in total there are eight projected W2 Weyl
nodes with a projected chiral charge of T2,
which are located near the midpoints of the
G − X and the G − Y lines. Because the T2 chiral
charge is a projected value, the Weyl cone is still
linear (9). The number of Fermi arcs terminat-
ing on a projected Weyl node must equal its
projected chiral charge. Therefore, in TaAs, two
Fermi arc surface statesmust terminate on each
projected W2 Weyl node.

Surface electronic structure of TaAs

We carried out low–photon-energy ARPES mea-
surements to explore the surface electronic
structure of TaAs. Figure 1H presents an over-
view of the (001) Fermi surface map. We observe
three types of dominant features, namely a
crescent-shaped feature in the vicinity of the
midpoint of each G − X or G − Y line, a bowtie-
like feature centered at the X point, and an
extended feature centered at the Y point. We
find that the Fermi surface and the constant-
energy contours at shallow binding energies
(Fig. 2A) violate the C4 symmetry, considering
the features at X and Y points. In the crystal
structure of TaAs, where the rotational symmetry

is implemented as a screw axis that sends the
crystal back into itself after a C4 rotation and a
translation by c

2 along the rotation axis, such an
asymmetry is expected in calculation. The crys-
tallinity of the (001) surface in fact breaks the
rotational symmetry. We now focus on the
crescent-shaped features. Their peculiar shape
suggests the existence of two arcs, and their
termination points in k-space seem to coincide
with the surface projection of the W2 Weyl
nodes. Because the crescent feature consists of
two nonclosed curves, it can either arise from
two Fermi arcs or a closed contour; however,
the decisive property that clearly distinguishes
one case from the other is the way in which the
constant-energy contour evolves as a function
of energy. As shown in Fig. 2F, in order for the
crescent feature to be Fermi arcs, the two non-
closed curves have to move (disperse) in the
same direction as one varies the energy (26).
We now provide ARPES data to show that the
crescent features in TaAs indeed exhibit this
“copropagating” property. To do so, we single
out a crescent feature, as shown in Fig. 2, B and
E, and show the band dispersions at represent-
ative momentum space cuts, cut I and cut II,
as defined in Fig. 2E. The corresponding E−k
dispersions are shown in Fig. 2, C and D. The
evolution (dispersive “movement”) of the bands
as a function of binding energy can be clearly
read from the slope of the bands in the dis-
persion maps and is indicated in Fig. 2E by the
white arrows. It can be seen that the evolution
of the two nonclosed curves is consistent with
the copropagating property. To further visual-

ize the evolution of the constant-energy con-
tour throughout kx; ky space, we use surface
state constant-energy contours at two slightly
different binding energies, namely EB ¼ 0 ¼ EF

andEB ¼ 20 meV. Figure 2G shows the difference
between these two constant-energy contours,
namely DIðkx; kyÞ ¼ IðEB ¼ 20 meV; kx; kyÞ−
IðEB ¼ 0 meV; kx; kyÞ, where I is the ARPES
intensity. The k-space regions in Fig. 2G that
have negative spectral weight (red) correspond
to the constant-energy contour at EB ¼ 0 meV,
whereas those regions with positive spectral
weight (blue) correspond to the contour at
EB ¼ 20 meV. Thus, one can visualize the two
contours in a single kx; ky map. The alternating
“red-blue-red-blue” sequence for each crescent
feature inFig. 2Gshows the copropagatingproperty,
consistent with Fig. 2F. Furthermore, we note that
there are two crescent features, one located near the
kx ¼ 0 axis and the other near the ky ¼ 0 axis, in
Fig. 2G. The fact that we observe the copropagating
property for two independent crescent features
that are 90° rotated with respect to each other
further shows that this observation is not due to
artifacts, such as a kmisalignment while perform-
ing the subtraction. The above systematic data
reveal the existence of Fermi arcs on the (001)
surface of TaAs. Just as one can identify a crystal
as a topological insulator by observing an odd
number of Dirac cone surface states, we empha-
size that our data here are sufficient to identify
TaAs as a Weyl semimetal because of bulk-
boundary correspondence in topology.
Theoretically, the copropagating property of

the Fermi arcs is unique to Weyl semimetals

614 7 AUGUST 2015 • VOL 349 ISSUE 6248 sciencemag.org SCIENCE

Fig. 1. Topology and electronic structure of TaAs.
(A) Body-centered tetragonal structure of TaAs,
shown as stacked Ta and As layers. The lattice of
TaAs does not have space inversion symmetry.
(B) STM topographic image of TaAs’s (001) surface
taken at the bias voltage –300 mV, revealing the
surface lattice constant. (C) First-principles band
structure calculations of TaAs without spin-orbit
coupling.The blue box highlights the locations where
bulk bands touch in the BZ. (D) Illustration of the
simplest Weyl semimetal state that has two single
Weyl nodes with the opposite (T1) chiral charges in
the bulk. (E) In the absence of spin-orbit coupling,
there are two line nodes on the kx mirror plane and
two line nodes on the ky mirror plane (red loops). In
the presence of spin-orbit coupling, each line
node reduces into six Weyl nodes (small black and
white circles). Black and white show the opposite
chiral charges of the Weyl nodes. (F) A schematic
(not to scale) showing the projected Weyl nodes
and their projected chiral charges. (G) Theoretically
calculated band structure (26) of the Fermi surface
on the (001) surface of TaAs. (H) The ARPES-
measured Fermi surface of the (001) cleaving plane
of TaAs.The high-symmetry points of the surface BZ
are noted.
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NbP: line nodes and Weyl points

CHI-CHENG LEE et al. PHYSICAL REVIEW B 92, 235104 (2015)

FIG. 4. (Color online) Electronic band structure of NbAs (a)
without and (b) with spin-orbit coupling.

d orbitals are strongly hybridized with the p orbitals. Although
p character leads to the major contributions in the bottom band,
the p orbitals are not fully occupied. In fact, the occupation
numbers obtained in the basis of linear combination of atomic
orbitals give only approximately half-filled p orbitals, and the
p orbitals also contribute to the energy above the Fermi energy.
Therefore, it is inadequate to neglect the effect of p orbitals
near the Fermi energy.

A simple picture to understand the obtained density of states
is that of the Ta or Nb d orbitals hopping strongly to the As
or P p orbitals and giving rise to the bonding and antibonding
bands across the Fermi energy. The Ta or Nb s orbital also
participates in the hybridization and does not donate itself
completely. With this hybridization scheme, the semimetal
feature is formed, which shows the valence and conduction
bands separated by a valley-shaped density of states at the
Fermi energy. The density of states is not zero at the Fermi
energy due to the lack of particle-hole symmetry and the two
distinct Weyl nodes (W1, W2) possessing different energies
for each compound. Furthermore, the valence and conduction
bands are found to cut through the Fermi energy and therefore
form hole and electron pockets, respectively. Note that the
major contribution to the density of states around the Fermi
energy is of d character. The bonding and antibonding p

orbitals are split into much lower and higher energy.

FIG. 5. (Color online) Electronic band structure of NbP (a) with-
out and (b) with spin-orbit coupling.

Some additional information can be obtained from Fig. 7.
TaAs and TaP share a wider bandwidth relative to the

FIG. 6. (Color online) Line nodes on the kx = 0 plane formed by
the crossing of valence and conduction bands in (a) TaAs, (b) TaP,
(c) NbAs, and (d) NbP without spin-orbit coupling. The red solid
circles indicated the projection of Weyl nodes on the kx = 0 plane
after turning on the spin-orbit coupling. For each circle, two Weyl
nodes of opposite chiralities on two sides of the kx = 0 plane are
found.

235104-4

FERMI SURFACE INTERCONNECTIVITY AND TOPOLOGY . . . PHYSICAL REVIEW B 92, 235104 (2015)

TABLE II. The coordinates (in units of reciprocal lattice vectors
of the conventional unit cell) and energies (in eV) of two representa-
tive distinct Weyl nodes denoted W1 and W2. In each compound the
energy of W2 is higher than that of W1. Here, ± stands for a mirror
pair of Weyl nodes.

Coordinate of W1 Energy of W1

TaAs (±0.0072, 0.4827, 1.0000) −0.0221
TaP (±0.0074, 0.4809, 1.0000) −0.0531
NbAs (±0.0025, 0.5116, 1.0000) −0.0322
NbP (±0.0028, 0.5099, 1.0000) −0.0534

Coordinate of W2 Energy of W2

TaAs (±0.0185, 0.2831, 0.6000) −0.0089
TaP (±0.0156, 0.2743, 0.5958) 0.0196
NbAs (±0.0062, 0.2800, 0.5816) 0.0042
NbP (±0.0049, 0.2703, 0.5750) 0.0259

narrower bandwidth of NbAs and NbP, which reflects that
5d electrons are more delocalized than 4d electrons and that
the replacement of As p by P p has less of an effect on the
overall density of states. However, it is clearly observed that
the density of states of P p in TaP is slightly lower than that
of As p in TaAs. In addition, the density of states of P p in
NbP is lower than that of As p in NbAs. This indicates that P
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FIG. 7. (Color online) The orbital contributions of Ta d or Nb d

and As p or P p in the density of states with spin-orbit coupling for (a)
TaAs, (b) TaP, (c) NbAs, and (d) NbP. The d and p contributions are
colored red and green, respectively. The total formula contributions
are plotted by black lines.

p orbitals lose more electrons and are farther away from the
picture of fully filled p orbitals. Another observation is that
Nb d orbitals in NbP show the largest area below the Fermi
energy and therefore possess the most d electrons out of the
family of four Weyl semimetal compounds.

IV. CHARGE CARRIERS

In this section we investigate the properties of the Fermi
surface. We first show the Fermi velocities of the Weyl
fermions and the band dispersion between the energies of
Weyl nodes and the Fermi energy for W1 and W2. Because of
symmetry, we will show results for W1 and W2 at positive kx ,
listed in Table II. Then the detailed studies of all the electron-
and holelike Fermi surfaces found in the four Weyl semimetal
compounds are discussed.

A. Fermi velocity of Weyl fermion

In Weyl semimetals, the energies of Weyl nodes are close to
the Fermi energy. Therefore, the physical properties of Weyl
fermions are easy to experimentally access by slightly electron
or hole doping the systems. The velocity of an electron can be
calculated by (1/�)dE/dk. The details of how the slope of the
band dispersion varies between W1 or W2 and the Fermi energy
can be found in Figs. 8 and 9, respectively. The velocities at

FIG. 8. (Color online) Band dispersion around W1 along (a) the
kx , (b) ky , and (c) kz directions of TaAs, TaP, NbAs, and NbP. The
k-space coordinate of each Weyl node is set to zero.

235104-5

Chi-Cheng Lee, et al, PRB 92, 235104 (2015)



NbP: scalar-relativistic fat bands and FS
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NbP: optical conductivity
exp
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NbP: bands and Fermi surface with SOC
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NbP: origin of the low energy peaks
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GdPtBi: optical conductivity

the measurement frequency window. Such a situation can
be relevant for our GdPtBi sample, as we discuss below.
This is also in agreement with the very small free-carrier
(Drude) contribution and low Hall carrier density.
The band structure of GdPtBi in the vicinity of the Fermi

level is obviously more complex than the model band
structure used in Ref. [42]. Thus, as mentioned above, we
compute σ1ðνÞ from the obtained band structure. In these
computations, the dipole matrix elements for interband
optical transitions were calculated on a 96 × 96 × 96
k-mesh using LMTO wave functions—it is necessary to
use sufficiently dense meshes in order to resolve transitions
at low energies [43]. The real part of the optical conduc-
tivity was calculated using the Kubo-Greenwood linear-
response expressions [44] with the BZ integration per-
formed using the tetrahedron method.
Before we discuss the results of these calculations, we

would like to note that obtaining a good agreement between
experimental and computed conductivity is known to be
challenging [45,46]. This is particularly the case for
(topological) semimetals, where only a qualitative match
can typically be achieved [27,36,43,47,48]. In the relevant
for this study low-energy part of the spectrum (below
∼100 meV), a reasonable agreement is particularly hard to
obtain [27,43]. Nevertheless, for GdPtBi we have reached a
fairly good agreement between our calculations and the
experimental spectra at low energies.
The results are shown in Figs. 5(c) and 5(d). Because of

the possible carrier doping in GdPtBi, discussed above, we

have some freedom in setting the position of the chemical
potential. We varied μ within �30 meV from the triple
point and compared the computed σ1ðνÞ spectra to each
other and to the experiment. Figure 5(c) demonstrates that
the best linear σ1ðνÞ, extrapolating to 0 at ν → 0, is
obtained if the chemical potential is at the triple point
(μ ¼ 0). If we vary μ, the calculated σ1ðνÞ either develops
huge peaks at low energies (ν < 200 cm−1), or does not
extrapolate to 0 as ν → 0, or both. Also, the quasilinear part
of the conductivity, calculated for μ ¼ 0, spans over the
largest frequency range. Thus, we choose the μ ¼ 0 curve
for further comparison with our experimental results; see
Fig. 5(d). (Obviously, very small deviations from μ ¼ 0 on
a meV scale are possible.)
In Fig. 5(d), a low-temperature (25 K) experimental

curve is shown alongside the calculated σ1ðν; μ ¼ 0Þ. The
overall linear increase of the experimental curve is well
reproduced. It is also evident that both the calculations and
experiment provide some deviations from perfect linearity.
Most remarkable is the bump, present in the calculations
and experiment, at around 80 cm−1. Such deviations reflect
the fact that the band structure is not ideally linear in all
three directions but more complex. Overall, we can con-
clude that the observed interband optical conductivity in
GdPtBi originates from the transitions between all the
bands near the triple points. Linear terms dominate the
dispersions of these bands in the close vicinity of the nodes,
leading to the almost, but not perfectly, linear optical
conductivity in GdPtBi at low frequencies.
From our band-structure calculations, we can compute

the Fermi velocities vF for the crossing bands. Calculations
exactly at the triple point are technically challenging, and,
thus, we compute vF in a close vicinity of it along the Γ − L
line—at �0.005 × 2π=a from the triple point; here a is the
lattice constant. For the doubly degenerate electronlike
band, we obtain vF ¼ 1.1 and 0.5 × 105 m=s, while for the
nondegenerate holelike band vF ¼ 2.4 and 2.8 × 105 m=s.
In a simple model of electron-hole symmetric crossing

linear bands, the optical conductivity is related to the Fermi
velocity vF via [19,20] σ1ðωÞ ¼ ðe2gN=24hÞ×
ðω=vFÞ, where g is the band degeneracy at the crossing
point (e.g., a Dirac node has g ¼ 4) and N is the number of
nodes per BZ. Obviously, this simple formula has a very
limited applicability. Nevertheless, if we straightforwardly
apply it to our experimental σ1ðωÞ and set g ¼ 3 and
N ¼ 8, we obtain an averaged Fermi velocity of ∼105 m=s,
which is in good agreement with the values calcu-
lated above.
In summary, we have found the low-frequency optical

conductivity of GdPtBi to be linear in a broad frequency
range (50–800 cm−1, ∼6–100 meV at T ≤ 50 K). This
linearity strongly suggests the presence of three-
dimensional linear electronic bands with band crossings
near the chemical potential. A comparison of our data with
the optical conductivity computed from the band structure

FIG. 5. (a),(b) Electronic bands of GdPtBi near the triple point
(marked as 3p). The chemical potential μ is set to zero at the triple
point. Doubly degenerate bands are shown as solid lines, while
nondegenerate bands as dashed lines. (c) Calculated interband
conductivity of GdPtBi, σ1ðωÞ, for a few different positions of μ
as indicated. (d) Comparison of the measured (upper curve) and
calculated for μ ¼ 0 (bottom curve) optical conductivity of
GdPtBi. Phonon modes are not included in the calculated
σ1ðωÞ. The experimental curve is shifted upwards by
100 Ω−1 cm−1 for clarity.
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exp: linear σ(ω) in a wide ω range (above TC ∼ 10 K)

calc: strong dependence on the Fermi level (µ) position

calc: linear σ(ω) due to nearly linear band dispersion ⊥ Γ–L
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conclusions

YbMnBi2: the narrow peak of the optical conductivity appears due to
inter-band transitions across the gapped “line nodes”; even if it is there,
linear σ(ω) is masked by the peak

NbP: intense inter-band peaks between nearly parallel SOC-spit bands mask
linear σ(ω)

GdPtBi: triple points but linear σ(ω)
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